If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+50x-600=0
a = 9; b = 50; c = -600;
Δ = b2-4ac
Δ = 502-4·9·(-600)
Δ = 24100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24100}=\sqrt{100*241}=\sqrt{100}*\sqrt{241}=10\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{241}}{2*9}=\frac{-50-10\sqrt{241}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{241}}{2*9}=\frac{-50+10\sqrt{241}}{18} $
| 3x+8=51 | | 2=1/3x-1/2x+2/3x | | (8x)+(x+3)=180 | | 2+16x=50 | | 3.5x+5=21 | | 3.5k-6.26=3.2k+3.4 | | 2n2-11n-21=0 | | 1/2a+3/8=3/4 | | 1/10p=5.28 | | 20.98=3s+3.31 | | 10x-6+(10x)=180 | | 1÷2(4z+1÷4)=2(z+1÷16 | | 7–2n=1 | | 48/p=6 | | 2x^+162=0 | | Y=30+(0.5)(x) | | 2m=140 | | -13/x=19=-6 | | 5/6y-2/3=-3/2 | | 0.25m=9 | | 1+x/4=4 | | y=6.35(40)-18.75 | | 5-5x=450 | | 6+2(-3x+4)=7 | | 7/8*n=105 | | -2t=10-t | | 8(n-4)-2(n+5)=6n-1 | | 5/6+h=-3 | | y-18=240 | | 3(z–6)=6 | | 2/3r-1=-5 | | Y=32+(0.5)(x) |